Mixed Modes Fracture and Fatigue Evaluation for Lithium-ion Batteries

نویسنده

  • Michael A. Stamps
چکیده

Lithium ion batteries have become a widely known commodity for satisfying the world’s mobile energy storage needs. But these needs are becoming increasingly important, especially in the transportation industry, as concern for rising oil prices and environmental impact from fossil fuels are pushing for deployment of more electric vehicles (EV) or plug in hybrid-electric vehicles (PHEV) and renewable energy sources. The objective of this research is to obtain a fundamental understanding of degradation mechanisms and rate-capacity loss in lithium-ion batteries through fracture mechanics and fatigue analysis approaches. In this study we follow empirical observations that mechanical stresses accumulate on electrode materials during the cycling process. Crack induced fracturing will then follow in the material, degrading the electrical contact surface area and reducing the capacitance of the battery. A fatigue analysis simulation is applied using ANSYS finite element software coupled with analytical models to alleviate these parameters that play the most pivotal roles in affecting the rate-capacity and cycle life of the lithium-ion battery. Our results have potential to provide new models and simulation tools for clarifying the interplay of structure mechanics and electrochemistry while offering an increased understanding of fatigue degradation mechanisms in rechargeable battery materials. These models can aid manufacturers in the optimization of battery materials to ensure longer electrochemical cycling life with high-rate capacity for improved consumer electronics, electric vehicles, and many other military or space applications. ENERGY OUTLOOK For decades, petroleum products have been the backbone for transportation in the U.S. and around the world. About 50% of petroleum consumption is dedicated to the transportation industry while the other 50% is comprised for electricity generation and industrial or residential use [1]. Today’s society has become heavily reliant on oil consumption for its day-today activities, and prices are predicted to keep rising at relatively constant rates (Fig. 1). This over-reliance on petroleum will only stymie the world in the future as oil reservoirs are drained and fuel prices skyrocket. In addition, environmentalist and scientist alike have studied the negative effects of the enormous carbon emissions to our atmosphere. It has been reported that 98% of all carbon dioxide emissions, the main contributor, come from petroleum fuels [2]. This has induced the drive for ‘going green’ which has become a worldwide epidemic. Thus, need to reduce our carbon footprint, especially in the petroleum driven transportation sector, is changing the way we design for the future. Government policy has recently set requirements for auto manufactures by year 2016 in which an average of 35.5 mpg and a maximum CO2 exhaust level of 250 grams per mile must be achieved for ‘light vehicles’ [3]. Therefore researchers have increased efforts in looking for alternative fuels and energy sources such as improved batteries for hybrid and electric vehicle transportation in particular [4]. Figure 1: Current and future market trends in the oil industry for transportation, industrial use, residential and electricity generation. Trends show consistent increases in consumption and price through year 2035, but price increases at a slightly higher rate. *Corresponding author

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrochemical Evaluation of PbO Nanoparticles as Anode for Lithium Ion Batteries (Technical Note)

PbO nanoparticles were synthesized using hydrothermal process. Scanning electron microscopy (SEM) was used in order to investigate of PbO powders. X-ray diffraction (XRD) pattern confirmed β-PbO formation during this process. The crystallite size of the powders was calculated using Scherrer formula about 74.6 nm. Electrochemical evaluation of the PbO nanoparticles as anode for Li-ion batteries ...

متن کامل

Voltage increase of aqueous lithium-ion batteries by Li-ion conducting Li1.5Al0.5Ge1.5(PO4)3 glass-ceramic

  In this research, a lithium ion conducting lithium aluminum germanium phosphate (LAGP) glass-ceramic with a formula of Li1.5Al0.5Ge1.5(PO4)3 was synthesized by melt-quenching method and subsequent crystallization at 850 °C for 8 h. The prepared glass-ceramic was characterized using X-ray diffraction analysis (XRD) and field emission scanning electron microscopy (FESEM). The XRD patterns exhib...

متن کامل

Electrode Materials for Lithium Ion Batteries: A Review

Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...

متن کامل

An Effective Nitrogen Doping Technique for Improving the Performance of Lithium Ion Batteries with CNT Based Electrodes

Lithium ion batteries are among the most used rechargeable batteries in the world. Carbon nanostructures including carbon nanotubes (CNTs) are considered as important electrode materials for this kind of batteries. Therefore improving the performance of these carbon based electrodes in Lithium ion batteries is an important issue and attracts much attention in the battery community. In this manu...

متن کامل

Development of Lifetime Prediction Model of Lithium-Ion Battery Based on Minimizing Prediction Errors of Cycling and Operational Time Degradation Using Genetic Algorithm

Accurate lifetime prediction of lithium-ion batteries is a great challenge for the researchers and engineers involved in battery applications in electric vehicles and satellites.  In this study, a semi-empirical model is introduced to predict the capacity loss of lithium-ion batteries as a function of charge and discharge cycles, operational time, and temperature. The model parameters are obtai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012